Visualizing multi-dimensional spaces

Thomas Torsney-Weir

1

• Born:Allentown, PA

- Born: Allentown, PA
- Undergrad: Georgetown

- Born: Allentown, PA
- Undergrad: Georgetown
- Finance: NYC

- Born: Allentown, PA
- Undergrad: Georgetown
- Finance: NYC
- Master's: Simon Fraser

- Born: Allentown, PA
- Undergrad: Georgetown
- Finance: NYC
- Master's: Simon Fraser
- PhD/Postdoc: University of Vienna

- Born: Allentown, PA
- Undergrad: Georgetown
- Finance: NYC
- Master's: Simon Fraser
- PhD/Postdoc: University of Vienna
- Now: Swansea University

Multi-dimensional spaces

Users/tasks

Sweet

Spotter

Sweet

Spotter

Multi-dimensional spaces

<u>Outline</u>

- Definition
- Applications
- Solutions
- Personal contributions

What is a multi-D space?

- 3-20 dimensions
- meaningful axes/dimensions
- continuous derivatives

Application areas

- Simulations
- Regression models
- Optimization surfaces
- Multi-objective optimization

Simulations

Protein folding

Weather

http://depts.washington.edu/daglab/pom/07mar.jpg

Image segmentation

https://en.wikipedia.org/wiki/File:AtmosphericModelSchematic.png

Optimization surfaces

https://en.wikipedia.org/wiki/File:Ackley%27s_function.pdf

Multi-objective optimization

http://www.enginsoft.com/assets/img/tecnology/pido/MultiobjectiveOptimization_b.jpg

Too many dimensions to show on screen

<u>Challenges</u>

Dimensions are meaningful

http://eat3d.com/blog/metalliandy/blender-ocean-simulation-foam-accumulation

<u>Challenges</u>

Showing changes in behavior

Challenges

Response times are important

Mobile Check-Ins (+500ms dear color og onst electande ar room clear color log brush select range par zoom

500ms

dear do og prusteled ange ar joon clear color log brush select range pan zoom

Flight Delays (+500ms)

0ms Mobile Check-Ins (+0ms)

Flight Delays (+0ms)

- Delays decrease interaction
- Exploration decreases

Zhicheng Liu, Jeffrey Heer. The Effects of Interactive Latency on Exploratory Visual Analysis. IEEE Trans. Visualization & Comp. Graphics (Proc. InfoVis), 2014

Overview of solutions

- Definition
- Applications
- Solutions
- Personal contributions

so what are approaches to solve this?

- discretization
- dimension reduction
- topology
- slicing

Discretization

Pros:

- Many visualization techniques
- Less training
- Cons:
 - Connections between points lost

Dimension reduction

- Reduce to 2D screen
- Can find patterns automatically

Cons:

Pros:

- Meaningless dimensions
- True dimensionality may be > 3

https://en.wikipedia.org/wiki/Nonlinear_dimensionality_reduction#/media/File:Lle_hlle_swissroll.png

Carr, Snoeyink, and Axen 2003

2.

Correa, Lindstrom, and Bremer 2011

Pros:

- 2D representation of multi-D field
- Highlights key features

- Difficult to understand
- Input space removed

Gerber et al. 2010

Slicing

Pros:

- Reduces dimensionality
- Easy to understand metaphor

<u>Cons:</u>

 Focus point selection important

My contributions

- Definition
- Applications
- Solutions
- Personal contributions

Sliceplorer

How do we look at multi-dimensional surfaces?

Torsney-Weir, T., Sedlmair, M. and Möller, T. (2017), Sliceplorer: 1D slices for multi-dimensional continuous functions. Computer Graphics Forum, 36: 167-177. doi:10.1111/cgf.13177

Housing prices in Boston

Housing prices in Boston

- 1) What's the most expensive house?
- 2)What factors contribute the most to changes in price?
- 3) How much does house price change with safety?
- 4) Is the relationship linear/logarithmic/etc?

Housing prices in Boston

1) What's the most expensive house?

- 2)What factors contribute the most to changes in price?
- 3) How much does house price change with safety?

4) Is the relationship linear/logarithmic/etc?

Continuous model

UCI housing dataset

Key factors

CRIM	Crime rate
•••••	••••••••

- LSTAT % lower income status
- NOX Nitric oxides concentration
- RM Average rooms per dwelling

Building a model

Median home price

Visualization

Slicing

Q1: Most expensive house

lstat

J2:

20 25

lstat

5

Q3: Influence of safety?

Q4: Type of relationship?

Model selection

SVM - polynomial

Sliceplorer

- Good "first pass" visualization
- Easy to implement
- Easy to understand

Relationships between parameters

Torsney-Weir, T., Möller, T., Sedlmair, M. and Kirby, R. M. (2018), Hypersliceplorer: Interactive visualization of shapes in multiple dimensions. Computer Graphics Forum, 37: 229-240. doi:10.1111/cgf.13415

3D

3D

Sommerville, 1929

3D

4D

3D

5D

What are we doing?

- Randomly sample focus points
- Projections of 2D slices
- Interactive viewer

Algorithm

1)Input vertices

2)Compute the convex hull --- (d-1)-dimensional simplices (quickhull)

3)Generate m d-dimensional focus points (Sobol sequence)

4)For each 2D plane, focus point, and simplex compute the intersection between the 2D plane and the (d-1)-dimensional simplex

5)Draw each intersection line for each focus point in a SPLOM layout

$0.24 \times +0.27$ $\equiv 0$ <1 -0.43x+0.12 0.78×-0.2 <1 There will be a solution

Pareto fronts

2 objectives: trade-off curve

3 objectives: Interactive decision maps [Lotov:2004]

Typical method

Typical method

Pareto fronts

- Algorithm for 2D slices of polytopes
- Relationships between dimensions

Conclusion

Future work

- Relatively un-explored area
 - Most work on discrete data visualization
- New visual encodings
- Refining tasks
- Improving algorithms

												~
Task	Task description for discrete data items from [AES05]	Our adaption to continuous scalar functions	QRI results					Expert study results				
											1	
Retrieve value	"Given a set of specific cases, find attributes of those cases"	Given an x, what is the function value?										
	"Given some concrete conditions attribute values, find data cases satisfying											
Filter	those conditions."	For what parameter values is the function equal or over x?										
	"Given a set of data cases, compute an aggregate numeric representation											
Compute derived value	of those data cases"	Summary statistics: variance, mean, SA										
	"Find data cases possessing an extreme value of an attribute over its range											
Find extremum	within the data set"	Find local/global min/max										
	"Given a set of data cases and an attribute of interest, find the span of											
Determine range	values within the set"	What is the range of possible outputs?										
	"Given a set of data cases and a quantitative attribute of interest,											
Characterize distribution	characterize the distribution of that attribute's values over the set"	What types of shapes do the manifolds have										
	"Identify any anomalies within a given set of data cases with respect to a											
Find anomalies	given relationship or expectation, e.g. statistical outliers"	Do areas of the manifold have shapes unlike any others										
Cluster	"Given a set of data cases, find clusters of similar attribute values"	Areas of the manifold have similar shapes										
	"Given a set of data cases and two attributes, determine useful											
Correlate	relationships between the values of those attributes"	1D vs 2D relationships					-				0.0	

Conclusion

- 1D slices sliceplorer
- 2D slices hypersliceplorer
- Definition and challenges of multi-dimensional visualization

Thanks!

Optimization for the difference of the second secon

performance Weir et al.: Sliceplorer

Klein bottle

Comparing spaces

Positive polynomials

Bernstein polynomials

$$b_{v,n} = {\binom{n}{v}} x^v (1-x)^{n-v}$$
$$B_n(x) = \sum_{v=0}^n \beta_v b_{v,n}(x)$$

$$\beta_v \ge 0, v = 0, \dots, n$$

Experiment

1. Pick a polynomial of degree d

2. Set one of the d+1 coefficients to 1

 $a_0 + a_1 x + a_2 x^2 + 1 x^3$

 $a_0 + a_1x + a_2x^2 + 1x^3 + a_4x^4$

Positive

Bernstein Difference