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My research

Multi-dimensional spaces

Users/tasks

API design
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Visualization and machine learning
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Visualization and machine learning

INPUT x

FUNCTION f:

OUTPUT f(x)

Morton, Kristi, Ross Bunker, Jock Mackinlay, Robert Morton, 
and Chris Stolte. "Dynamic workload driven data integration 
in tableau," Proceedings of the 2012 acm sigmod 
international conference on management of data. 2012.

similar goals: make sense of complex data

VisualizationMachine learning
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Who helps whom?

both!
● Visualization helps machine learning: 

evaluating models
● Machine learning helps visualization: 

machine learning for embedded analysis
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Outline
● Visualization helping machine learning
● Machine learning helping visualization
● What does the future hold?
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Visualization helping machine 
learning
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How do they work together?
● Building models

– Meta parameters
– Parameter selection

● Validating models
● Understanding models
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Meta parameters
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What are meta parameters?

Control how learning takes place
● Learning rate
● Number and size of network layers
● Slack variables
● Stopping conditions
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Why study meta parameters?
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Why study meta parameters?
Meta parameters can have a large influence on performance
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Manual method
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Manual method
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Objective measures

Image

Ground truth

Dice: 0.85-
Error: 0.25-

...
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Visual parameter space exploration
Use a more principled approach

Sedlmair, Michael, Christoph Heinzl, Stefan Bruckner, Harald Piringer, and Torsten Möller. "Visual parameter space 
analysis: A conceptual framework," IEEE Transactions on Visualization and Computer Graphics. 2014.
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Tuner

-
-

Torsney-Weir, Thomas, Ahmed Saad, Torsten Möller, Britta Weber, Hans-Christian Hege, Jean-Marc Verbavatz, and Steven 
Bergner. "Tuner: Principled parameter finding for image segmentation algorithms using visual response surface 
exploration," IEEE Transactions on Visualization and Computer Graphics. 2011.
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Tuner

https://imagej.nih.gov/ij/plugins/volume-viewer.html
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Tuner



  34

Tuner



  35

Tuner
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Validating and verifying models



  37

What do we mean?

Committee on Mathematical Foundations of Verification, Validation, and Uncertainty Quantification; Board on 
Mathematical Sciences and Their Applications, Division on Engineering and Physical Sciences, National Research 
Council. Assessing the reliability of complex models: Mathematical and statistical foundations of verification, 
validation, and uncertainty quantification 2012.

How do we know when our models are working?
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Model selection
● What is the best model for my data?
● How well will these models generalize?
● Summary statistics are not always enough
● Balancing multiple objectives is difficult
● Certain training points might be very 

important
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Example

Boston housing dataset
● 13 factors

– crime rate
– number of rooms
– etc

● want to predict home price
● what regression model to pick?
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Function inspection

1D function 2D function

More than this gets hard!
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Slicing
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Sliceplorer views

Torsney-Weir, Thomas, Michael Sedlmair, and Torsten Möller.
"Sliceplorer: 1D slices for multi-dimensional continuous functions,"
Computer Graphics Forum. 2017.

NN (single layer)

NN (dual layer)

SVM (polynomial)

SVM (RBF)
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Summary
● Just an answer is not enough (context)
● Humans have trouble understanding 

complex models
● Interactivity can bring people into the 

model
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Machine learning helping 
visualization
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How?

Sacha, D., A. Stoffel, F. Stoffel, Bum Chul Kwon, G. Ellis, and Daniel A Keim. "Knowledge generation model for 
visual analytics," Visualization and Computer Graphics, IEEE Transactions on. 2014.

Computers are good at calculating
Humans provide domain knowledge
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Book ad!
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Methods
● Clustering
● Classification
● Regression
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KeyVis

Isenberg, Petra, Tobias Isenberg, Michael Sedlmair, Jian Chen, and Torsten Möller. "Visualization as seen 
through its research paper keywords," IEEE Transactions on Visualization and Computer Graphics. 2017.
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KeyVis

goal: find relevant papers for a research project

● What are "key" papers in subject?
● How helpful are keywords?
● Do keywords relate to each other?
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KeyVis
step 1: cluster the papers based on keywords
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KeyVis
step 2: build an interface for the clustering
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Regression
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Slicing

p1

p2

p3

2D slices1D slices
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The future!
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Interesting projects
● How can humans and machines work 

together?
● Visualizing regression algorithms
● Understand what "understandability" 

means
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Thanks!
www.tomtorsneyweir.com

thomas.torsney-weir@univie.ac.at

@gabysbrain
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